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Neurons in Dorsal Anterior Cingulate Cortex Signal
Postdecisional Variables in a Foraging Task
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Department of Brain and Cognitive Sciences and Center for Visual Science, University of Rochester, Rochester, New York 14618

The dorsal anterior cingulate cortex (dACC) is a key hub of the brain’s executive control system. Although a great deal is known about its
role in outcome monitoring and behavioral adjustment, whether and how it contributes to the decision process remain unclear. Some
theories suggest that dACC neurons track decision variables (e.g., option values) that feed into choice processes and is thus “predeci-
sional.” Other theories suggest that dACC activity patterns differ qualitatively depending on the choice that is made and is thus “postde-
cisional.” To compare these hypotheses, we examined responses of 124 dACC neurons in a simple foraging task in which monkeys
accepted or rejected offers of delayed rewards. In this task, options that vary in benefit (reward size) and cost (delay) appear for 1 s;
accepting the option provides the cued reward after the cued delay. To get at dACC neurons’ contributions to decisions, we focused on
responses around the time of choice, several seconds before the reward and the end of the trial. We found that dACC neurons signal the
foregone value of the rejected option, a postdecisional variable. Neurons also signal the profitability (that is, the relative value) of the offer,
but even these signals are qualitatively different on accept and reject decisions, meaning that they are also postdecisional. These results
suggest that dACC can be placed late in the decision process and also support models that give it a regulatory role in decision, rather than
serving as a site of comparison.

Introduction
The dorsal anterior cingulate cortex (dACC) is a key node in the
brain’s executive control system. It is situated at the interface of
the reward and motor systems and thus likely plays an important
role in using reward information to influence action (Paus,
2001). There is a great deal of information on its role in monitor-
ing and adjustment (Ito et al., 2003; Rushworth et al., 2004;
Quilodran et al., 2008; Alexander and Brown, 2011; Bernacchia et
al., 2011; Hayden et al., 2011a,b; Shenhav et al., 2013). It is sensi-
tive to received rewards, errors, and to differences between ex-
pected and obtained rewards (Amiez et al., 2005, 2006;
Matsumoto et al., 2007; Hayden et al., 2011a). These signals ap-
pear to summate to indicate the balance of evidence in favor of
adjustments to action or the need for control (Shima and Tanji,
1998; Kerns et al., 2004; Hayden et al., 2011b; Shenhav et al.,
2013).

There is relatively less information on the direct contribu-
tions, if any, of dACC to the value representation and comparison
processes that constitute reward-based choice. On one hand (as
we will argue here), dACC may not be directly involved, and
instead function as a monitor and controller of both the decisions

we make and of their outcomes. If so, we would expect that its
responses around the time of the decision to signal variables re-
lated to the chosen option and to depend qualitatively on the
choice that is made (Cai and Padoa-Schioppa, 2012). On the
other hand, dACC may represent values of offers. This informa-
tion would presumably be used for a downstream comparison
process, to determine a choice (Wunderlich et al., 2009).

To test these ideas, we recorded activity of single dACC neu-
rons in a diet selection task based on a famous problem from
foraging theory (Krebs et al., 1977; Stephens and Krebs, 1987).
On each trial, monkeys accept or reject a delayed reward. To solve
this task, monkeys should compare the rate of the reward they
expect to receive if they accept it (i.e., the profitability of the offer)
to the rate of reward they would expect to receive in if they were to
reject it (Krebs et al., 1977; Stephens and Krebs, 1987). The fun-
damental logic of this idea, that decisions should be compared
with the opportunity cost of the next best alternative, is the same
as the idea of economists that “all costs are opportunity costs”
(Krugman et al., 2011). In the diet selection task, the foregone
benefit of accepting an offer is a linear function of its delay and
does not depend on its reward size, whereas the foregone benefit
of rejecting is a linear function of its reward size and does not
depend on its delay.

We find that around the time of the choice, neurons signal
foregone benefit of rejected options. They also signal profitabil-
ity, but do so in a different format (meaning neurons use different
response patterns) for accept and reject decisions. Thus, variables
encoded by dACC neurons around the time of the decision are
predominantly postdecisional. These findings suggest that dACC
does not serve as a site of value comparison. We conjecture that
the brain uses these variables to monitor and evaluate the out-
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comes of decisions and perform strategic or regulatory adjust-
ments, perhaps as it is being made. These results endorse the idea
that dACC is fundamentally a controller, both during and after
decisions.

Materials and Methods
Ethics statement. All procedures were approved by the University of
Rochester Institutional Animal Care and Use Committee and were de-
signed and conducted in compliance with the Public Health Service’s
Guide for the Care and Use of Animals.

Task. On each trial of our task, an option appeared at the top of the
screen and moved smoothly at a constant rate downward. All options
were horizontally oriented rectangles 80 pixels high and of variable width
(60 –300 pixels; Fig. 1). Option color indicated reward value: orange
(0.075 ml), gray (0.135 ml), green (0.212 ml), or cyan (0.293 ml). In
addition to these four colors, one-fifth of options were divided horizon-
tally into half-cyan and half-red portions; these offered a 50% chance of
receiving a 0.293 ml reward, and 50% chance of receiving no reward.
Option width indicated delay associated with that option. Option widths
were 60, 120, 180, 240, and 300 pixels and corresponded to delays of 2, 4,
6, 8, or 10 s, respectively. Each possible option (30 options, 5 widths by 6
colors) appeared with equal frequency; width and color were selected
randomly and independently on each trial.

Two male rhesus macaques (Macaca mulatta; Monkeys B and J) per-
formed the task. On each trial, a subject could select an option by fixating
it or reject the option by avoiding direct gaze on it. In the absence of any
action, each option took 1 s to move vertically downward from the top of
the display area of the computer monitor to the bottom, after which time
it disappeared and could no longer be chosen. In this case, the trial would
end and a 1.5 s intertrial interval (ITI) would begin. If the monkey se-
lected an option by fixating it, the option would stop moving wherever it
was and then would begin to shrink horizontally. Shrinking rate was
constant (30 pixels/s) and thus option width served to identify total
remaining delay associated with each option.

If the monkey averted gaze from the option during the shrinking
phase, the option would (after a 0.25 s grace period) continue its move-
ment toward the bottom of the screen. As it moved, its width would
remain at what it had been when gaze was averted, and if it was fixated

upon again, it would again pause and begin
shrinking from its new, smaller width. If at any
point the monkey held an option until it
shrunk entirely, the appropriate reward would
be delivered, the trial would end, and a 1.5 s ITI
would follow.

Behavioral techniques. Horizontal and verti-
cal eye positions were sampled at 1000 Hz by an
infrared eye-monitoring camera system (Eye-
Link 1000, SR Research). We wrote our exper-
iments in MATLAB (MathWorks), using the
Psychophysics and Eyelink Toolbox exten-
sions. A standard solenoid valve (Parker)
controlled the duration of water delivery. Im-
mediately before recording, we performed a
careful calibration of our solenoid system to
establish a precise relationship between sole-
noid open time and water volume in our rigs.

Surgical procedures. Two male rhesus mon-
keys (Macaca mulatta) served as subjects. Ini-
tially, a head-holding mount was implanted
using standard techniques. Four weeks later,
animals were habituated to laboratory condi-
tions and trained to perform oculomotor tasks
for liquid reward. A second surgical procedure
was then performed to place a 19 mm plastic
recording chamber (Crist Instruments) over
dorsal anterior cingulate cortex (32 mm ante-
rior, 7 mm medial interaural). Animals re-
ceived analgesics and antibiotics after all
surgeries. The chamber was kept sterile with

regular antibiotic washes and sealed daily with sterile plastic caps.
Microelectrode recording techniques. Single electrodes (Frederick Haer;

impedance range 0.8 – 4 M�) were lowered using a microdrive (NAN
Instruments) until the waveform of one or more (1–3) neuron(s) was
isolated. Individual action potentials were identified by standard criteria
and isolated on a Plexon system. Neurons were selected for study solely
based on the quality of isolation and never on task-related response
properties.

We approached dACC through a standard plastic recording grid (Crist
Instruments). dACC was identified by structural magnetic resonance
images taken before the experiment and concatenated using Brainsight
(Rogue Research). Neuroimaging was performed at the Rochester Center
for Brain Imaging, on a Siemens 3T MAGNETOM Trio TIM using 0.5
mm voxels. Chamber placement was reconciled with Brainsight. We also
used Brainsight to guide placement of grids and to determine the location
of our electrodes. We confirmed recording locations by listening for
characteristic sounds of white and gray matter during recording, which
in all cases matched the loci indicated by the Brainsight system with an
error of �1 mm. Our recordings came from areas 6/32 and 9/32 accord-
ing to the Paxinos atlas.

Optimal foraging calculations. We based our estimates of the optimal
threshold for acceptance of an option off the algorithm described by
Stephens and Krebs, 1987. First, a ranked ordering of the possible kinds
of options (4 reward sizes � 5 delay sizes) was generated based on each
option’s profitability. We left out gamble options due to difficulties esti-
mating the value of them (discussed in more detail at the end of this
section).

According to the Prey Algorithm (Stephens and Krebs, 1987), options
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Figure 1. Task and recording location. A, Task design. Options moved smoothly down the screen. Subjects fixated options to
choose them. Rewards were given if fixation was maintained for a fixed delay (indicated by option width). Color indicated reward
available. Two example trials are shown. In the first, the subject does not fixate (i.e., he rejects). In the second, the subject fixates
to completion and receives a reward (i.e., he accepts). B, Reward sizes and handling times used. C, Recording site in dACC.
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the current strategy to include the option being considered until the
above inequality is no longer satisfied. At that point, the left side of the

inequality,
�i�1

j �iei

1 � �i�1
j �ihi

is the optimal threshold.

The model assumes that there is no cost to rejecting an option. In our
task, this assumption does not hold true. Thus, our task violates one
of the assumptions of the prey model, so we made one small alteration to
the above algorithm. Rejecting an option imposes a small time cost of up
to 1 s for the option to fall to the bottom of the screen, plus a 250 ms grace
period where the option stays in place, plus time required to make a
decision (and look away), which generally takes 500 ms. Thus, we esti-
mated the time cost of rejection at 1.75 s. To take this cost into account,
we simply subtracted it from the handling time, to get the added cost of
acceptance. This step never resulted in a negative handling time, as all
handling times were 2 or more seconds.

The exclusion of gambling options from this optimality analysis was
due to the lack of a suitable method for including them. In principle, one
could use the expected profitability of the options (the expected reward
size divided by the delay). However, we know from a large number of
previous results (Hayden et al., 2008, 2011a; Hayden and Platt, 2009), as
well as the monkeys’ behavior in the present task that they overvalue
gambles (see Results, Behavioral results). Thus using the profitability
provides a poor measure of the subjective value of these options. Alter-
natively, we could use the monkeys’ own behavior to determine the
subjective value of these options. However, using this method would
produce spurious correlations between the estimated optimal behavior
and the animals’ behavior. Thus, we simply chose to exclude these op-
tions from the optimality analysis. Note that doing so has no bearing on
our major results presented in this paper.

Results
Behavioral results
Both monkeys rapidly learned and mastered the diet selection
task. They appeared to have an understanding of the task within a
few dozen trials and developed a consistent strategy within 3 d of
training. Both monkeys were trained for at least 3 weeks before
recording began to ensure that preferences were stable. All data
reported here come from well after the completion of this train-
ing period. We continued to monitor and verify stability
throughout recordings

Normative behavior in this task demands sensitivity to both
reward size and delay of offers. Both monkeys showed sensitivity
to reward size (Fig. 2A; linear regression, acceptance rate re-
gressed onto reward size, in �l: b � 0.02165, t(49973) � 107.653,
p � 0.0001) and delay length (linear regression, acceptance rate
regressed onto time in seconds; b � �0.099, t(49973) � �147.3,
p � 0.0001) in their choices. Although monkeys could, in theory,

abandon an option after it was chosen they seldom chose to do
this (they ended up abandoning after fixating for 750 ms on 6.6%
of all trials, 8.3% in Monkey B and 4.0% in Monkey J).

According to foraging theory, profitability (defined as the re-
ward size divided by the amount of time required to obtain it) is
the key variable foragers should use to make their decision in a
stable environment (Stephens and Krebs, 1987). Both monkeys
showed behavior that was consistent with normative foraging
theory: a strong relationship between acceptance rates and prof-
itability (Fig. 2B; logistic regression, b � 141.56, z(49973) �
103.0, p � 0.0001). The optimal policy in this task is to set a
specific fixed accept/reject threshold whose value depends on the
average richness of the environment (Stephens and Krebs, 1987).
Animals should therefore accept all prey items more profitable
than a specific value and reject all less profitable items.

Thus, we might expect a step–function shaped accept–reject
curve. Foraging theory gives an the optimal threshold in this task
of 23.7 �l/s (see Materials and Methods for estimation method;
Stephens and Krebs, 1987). The two animals’ transition point
(the point at which we estimate a 0.5 acceptance rate) was 26.3
�l/s, 11% above the optimal threshold (Fig. 2B). The transition
point for subject J is 23.6 �l/s, transition point for Monkey B is
29.1 �l/s. Thus, Monkey B was biased to accept slightly more
often than he should have; Monkey J nearly matched the optimal
threshold. Acceptance rates were not well fit by a step function,
but instead showed a relatively shallow sigmoidal curve (Fig. 2B).
This pattern is reminiscent of that observed in a well known
earlier testing of foraging preferences using a similar task (Krebs
et al., 1977). This is not surprising, given that stochasticity in
preference behavior is a general trait of biological decision-
makers (Busemeyer and Townsend, 1993).

In addition to the four prey options with predictable out-
comes, 20% of the prey options were gambles: these offered a
50% chance of the largest reward size (293 �l) and 50% chance of
no reward (Fig. 1B). The monkeys’ acceptance rate for gamble
options was much higher than would be predicted given their
expected values (67.7% acceptance rate of all gamble options,
where an acceptance rate of 53.4% is expected, this is highly sig-
nificant, p � 0.0001, binomial test; Fig. 2C). Previous studies
have reported risk-seeking behavior in two-option choice con-
texts; that is, monkeys are more likely to choose a risky option
than one would predict based on its expected value (Hayden and
Platt, 2009; Hayden et al., 2010; O’Neill and Schultz, 2010; So
and Stuphorn, 2010; Heilbronner and Hayden, 2013). These data
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Figure 2. Behavior. A, Proportion of options accepted varied with both reward amount and delay. Colors indicate reward sizes as indicated by Figure 1B. B, Acceptance rate rose with profitability
of option. Gamble options were excluded from this analysis. Blue line indicates best-fit logistic line. Red line is the optimal threshold (see Materials and Methods for optimality calculation details).
C, Monkeys had a larger acceptance rate for gambles than would be expected based on the profitability of gambles. Blue line indicates the estimated acceptance rate for gamble options based on
line fit from B. Blue-red dashed line indicates actual gamble acceptance rate. For all panels, error bars are smaller than the lines.
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thus indicate that monkeys’ risk-seeking bias extends beyond bi-
nomial choice tasks to arguably more naturalistic foraging-line
tasks, and thus demonstrate the robustness of monkeys’ risk-
seekingness (Heilbronner and Hayden, 2013).

Time course of neural responses
We recorded the activity of 124 neurons from dACC while mon-
keys performed the diet selection task (74 neurons from Monkey
B, 50 from Monkey J). The recording location is shown in Figure
1C and described in Materials and Methods. During each trial, we
typically observed an initial burst of spikes followed by an ex-
tended period of low activity and then a second period of high
activity around the time of the reward (Fig. 3A). These basic
patterns are consistent with the perisaccadic activations we have
reported previously in this region (Hayden et al., 2011b).

We first sought to estimate the amount of time it took the
monkeys to make their decisions. Monkeys generally adopted a
strategy of fixating the option as soon as it appeared and then
either maintaining gaze to accept it or averting their eyes to reject
it (the rare trials where the monkey never fixated the option were
not analyzed). Because the time of the accept decision is not
observable, we estimated decision time by measuring when the
animals typically looked away during reject trials. We found that
mean reject time was 495 �6 ms (SE). Given that oculomotor
planning and execution presumably takes at least 100 ms (Stanford
et al., 2010), we estimated that the decision generally occurred ap-
proximately between 300 and 400 ms after stimulus onset.

We first looked at the population frequency of encoding of the
two parameters that defined each option, its delay and its reward
size (fluid volume). We reasoned that neurons encode a variable
if their firing rates correlate with the value of that variable and so
performed a correlation with running boxcar (100 ms windows,
10 ms step). Because spiking patterns are non-Gaussian (Dayan
and Abbott, 2005), we used Poisson regression (including an
estimated dispersion coefficient to account for overdispersion in
our data) to relate the number of spikes onto z-scored values of
delay and reward size (Fig. 3B).

We found that the proportion of neurons encoding either task
variable peaked 	500 ms, shortly after the estimated decision
time, and then remain fairly stable for the next 500 ms. We there-
fore used the epoch from 500 to 1000 ms after the onset of the

stimulus summarize the effects we see in
the boxcar analysis. (Similar although
weaker patterns were found in other adja-
cent epochs; data are not shown here). A
high proportion of neurons encoded ei-
ther delay (37.9%, 47 of 124 neurons) or
reward (42.7%, n � 53/124), and many
encoded both simultaneously (24.2%,
n � 30/124).

Of those neurons significantly encod-
ing reward size in the 500 –1000 ms epoch,
64.1% (n � 34/53) correlated positively
with reward size, and the remaining
35.9% (n � 19/53) negatively correlated
with reward size. This bias toward positive
encoding approaches, but does not reach,
significance (p � 0.0534, two-sided bino-
mial test). Of those significantly encoding
delay, 55.3% (n � 26/47) correlated posi-
tively with delay, and the remaining
44.7% (n � 21/47) correlated negatively
with delay. This bias toward positive en-

coding is not significant (p � 0.560, two-sided binomial test).

Neurons in dACC preferentially encode delay on accept trials
In the diet selection task, accepting an option provides a reward
but also imposes an opportunity cost in the form of a certain
delay. This delay is costly because monkeys lose the opportunity
to harvest other rewards while they are waiting (Charnov, 1976;
Stephens and Krebs, 1987). Given the well established role of
dACC in encoding fictive rewards and values of unchosen op-
tions, we hypothesized that immediately following accept deci-
sions, dACC neurons would encode the option’s delay but not its
reward size (Hayden et al., 2009; Boorman et al., 2011). We found
this to be generally true (Fig. 4A,B; see example neurons).

We first used a running boxcar analysis (100 ms sliding win-
dow, steps of 10 ms), only including the data from accept trials
(Fig. 4C,E). We again used Poisson regression to relate the num-
ber of spikes onto z-scored values of delay and reward size on each
window. We found that, at around the time of the decision, there
was a divergence between the number of neurons significantly
signaling reward size and the number significantly signaling de-
lay, with more signaling delay (Fig. 4C). The strength of this
signaling, as measured by regression coefficients, followed the
same pattern (Fig. 4E). To quantify these effects, we again focused
on the 500 ms epoch beginning immediately after choice (t �
500 –1000 ms). We found that on accept trials the regression
coefficient for delay was significant for 37.1% of neurons (n �
46/124; criterion for significance, � � 0.05). The coefficient for
reward size was significant for only 24.2% (n � 30/124) neurons.
This difference between the proportion of neurons encoding de-
lay and reward size was significant (p � 0.028, z test for two
population proportions). These data indicate that, while neurons
encode both delay and reward information following choices,
encoding of delay is more prevalent.

Of those neurons significantly encoding reward size in the
500 –1000 ms epoch on accept trials, 50% (n � 15/30) correlated
positively with reward size, and the remaining 50% (n � 15/30)
negatively correlated with reward size. Of those significantly en-
coding delay, 60.9% (n � 28/46) correlated positively with delay,
and the remaining 39.1% (n � 18/46) correlated negatively with
delay. This bias toward positive encoding is not significant (p �
0.184, two-sided binomial test).
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We used the absolute value of the re-
gression coefficient (i.e., �-weight) as a
measure of effect size. This rectified re-
gression coefficient indicates how much
the firing rate of a neuron changes as a
function of delay or reward size. Note that
this definition is agnostic about the direc-
tion of tuning; the goal of this analysis is to
estimate how much information is avail-
able in average neuronal firing rates, re-
gardless of tuning direction. Our effect
size measure was consistent with our
prevalence measure. The average absolute
values of the �-weights were stronger for
delay than reward size in accept trials (Fig.
4C–F). Across all neurons, the average of
the �-weights in the 500 –1000 ms time
window was 0.157 for the delay coefficient
and 0.105 for the reward size coefficient
(note that, because the regressors were
z-scored, these coefficients are directly
comparable and have no units). In other
words, delay was 49.5% more effective in
driving neural activity than was reward
size. This difference was significant
(paired sample t test on individual values,
p � 0.001).

Neurons in dACC preferentially encode
reward size on reject trials
If dACC encodes foregone rewards, then
following reject decisions, we should see a
preferential encoding of reward size even
though the reward is unavailable and is
not expected. We again used a running
boxcar analysis (100 ms window, 10 ms
steps) including only data from reject tri-
als (Fig. 4D,F). In a reversal of what we
saw in accept trials, around the time of the
decision, dACC neurons became more
sensitive to reward size than to delay.

We again focused on the 500 –1000 ms
epoch to quantify these effects. The aver-
age of the absolute values of the �-weights
was stronger for reward size than delay in
reject trials (Fig. 4F). Across all neurons,
the average of the �-weights in the 500 –
1000 ms time window was 0.098 for the
delay coefficient and 0.129 for the reward
size coefficient. This difference was signif-
icant (p � 0.006, paired sample t test on
individual values). Thus, in contrast to
what we found on accept trials, reward
size is more strongly encoded than delay
on reject trials. We found that the coeffi-
cient for reward size was significant in
23.4% of neurons in our sample (n � 29/
124). Encoding of reward size was more
common than encoding of delay, which
achieved significance in 12.9% of neurons (n � 16/124; p � 0.05).
This difference between the proportion of neurons encoding de-
lay and reward size is significant (p � 0.032, z test for two popu-
lation proportions).

Of those neurons significantly encoding reward size in the
500 –1000 ms epoch on reject trials, 75.9% (n � 22/29) correlated
positively with reward size, and the remaining 24.1% (n � 7/29)
negatively correlated with reward size. This bias toward positive
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encoding is significant (p � 0.008, two-sided binomial test). Of
those significantly encoding delay, 37.5% (n � 6/16) correlated
positively with delay, and the remaining 62.5% (n � 10/16) cor-
related negatively with delay. This bias toward positive encoding
is not significant (p � 0.455, two-sided binomial test).

Foregone reward signals depend on whether monkeys choose
to accept or reject
Our results so far indicate that neurons preferentially encode
delays on accept trials and rewards on reject trials, and thus that
their representational repertoires depend on the choice that is
made. To test this idea directly, we ran a Poisson regression on all
trials (as opposed to separating by accept and reject as done
above). To compute regressors, we used a formal definition of
foregone reward. For reject trials, this was simply defined as the
reward of the rejected option; delay was irrelevant. For accept
trials, this was defined as the average reward that would be ex-
pected to be gained during a time period as long as the delay
period. Aside from its influence on the rate, any other cost of the
delay itself was ignored. This is a key variable used to make the
decision in foraging theory. To derive this measure empirically,
we calculated (on a session-by-session basis) the total amount of
reward (in milliliters) the animal received during the full session,
and divided this by the length of the session (in seconds), to get
the average rate of reward in milliliters per second during this
session. We then multiplied this by the delay to estimate the
reward forsaken by accepting an option. (This regressor is a linear
function of delay, and is therefore linearly related to the normal-
ized delay regressor used above). We then used Poisson regres-
sion to relate firing rate to these two opportunity cost measures, a
decision term (coded as 1 for accept and 0 for reject), and two
interaction terms, decision � each of the two opportunity cost
terms. We again computed coefficients in a sliding boxcar anal-
ysis (100 ms windows and 10 ms steps; Fig. 5) and on the longer
500 –1000 ms epoch. To compare the strength of encoding of the
opportunity cost variables, we analyzed the absolute values of the
regression coefficients (adding the coefficients of the decision
interaction terms to the opportunity cost coefficients to derive
the true coefficients for accept trials).

Consistent with our hypothesis, the foregone reward variable
for accepting is more strongly encoded on accept trials and fore-

gone reward of rejecting is more strongly encoded on reject trials.
In the 500 –1000 ms epoch, we found that the regression coeffi-
cient for the foregone reward of accepting was significantly
higher for accept trials than reject trials (mean of 4.32 regression
coefficient on accept trials versus 2.96 regression coefficient on
reject trials, difference is significant, p � 0.001, paired sample t
test on individual values). By taking the exponential of these
coefficients, we can determine that an increase in this cost by
0.001 ml would modulate firing rate by 7.5% on accept trials, but
only 1.9% on reject trials. In the same epoch, the coefficient for
the foregone benefit of rejecting was significantly higher for reject
trials than for accept trials (mean of 1.41 spikes/ml for accept
trials, 1.90 spikes/ml for reject trials, difference is significant, p �
0.015, paired sample t test on individual values). An increase in
this opportunity cost by 0.001 ml would modulate firing rate by
0.4% on accept trials and 0.7% on reject trials.

Note that with these non-normalized variables, it appears that
the foregone benefit of accepting has a somewhat larger effect
than the foregone benefit of rejecting, although we would not
expect this based on our above analyses using the normalized
versions. This is likely an artifact of the conservative methods we
used to calculate the foregone reward of accepting; we used the
average reward gained through an entire session, which includes
periods where the animal is not engaged. Thus, this average re-
ward gained is likely a low estimate and the regression coefficient
must be larger to compensate for this.

Firing rate does not predict behavior on following trial
We have previously shown a that there is a relationship between
firing rates and changes in strategy on the subsequent trial
(Hayden et al., 2009, 2011a). We next examined whether these
foregone reward signals predicted future choices. Using logistic
regression, we regressed choice on a trial (accept or reject) onto
firing rate during the 500 –1000 ms epoch of the previous trial.
We found no evidence that firing rate on the previous trial pre-
dicts choice. Specifically, only 4/124 neurons reached signifi-
cance; this proportion is not significant (p � 0.504, binomial
test). This lack of correlation between firing rate and choices
mirrors the lack of an observed correlation between the foregone
reward variable on this trial and choice on the next trial (logistic
regression, p 
 0.10). Thus, it appears that choices in the diet
selection task are, to the limits of our analyses’ ability to detect,
independent across trials. We have previously speculated that
postdecisional variables in dACC are encoded to the extent that
they influence behavior (Hayden et al., 2011a). However, the
present results suggest that, at least in this case, we find strong
encoding of foregone cost in dACC even though this does not
affect trial-to-trial variations in performance. These findings sug-
gest that encoding of foregone reward is so basic that it is ob-
served even when it is not measurably affecting behavior, and
suggests that monitoring signals in dACC are subject to a down-
stream gating process (Hayden et al., 2011b).

Encoding of profitability
Formally speaking, decisions in this task should be based solely
on profitability, or the ratio of reward to delay (Stephens and
Krebs, 1987). Because profitability is a function of both reward
and delay, it is difficult to distinguish profitability encoding from
encoding of either of these two variables. Perhaps the most con-
servative test for profitability encoding is to examine the correla-
tion between regression coefficients for reward and delay. A
significant negative correlation at the population level would
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Figure 5. A plot of the regression coefficients from the boxcar analysis of reject and accept
opportunity costs. Dashed lines indicate reject trial coefficients, solid indicate accept trial coef-
ficients. Sliding boxcar analysis; window size is 100 ms, time 0 is the time of option appearance,
and the green area indicates our best estimate of when the decision it being made.
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support the idea that dACC neurons, as a
group, encode profitability.

This is indeed what we find. Using the
reward size and delay coefficients from
our initial 500 –1000 ms Poisson regres-
sions, we see a negative correlation be-
tween delay and reward size coefficients
when looking at all trials together (r �
�0.40, p � 0.0001; Fig. 6A), accept trials
alone (r � �0.29, p � 0.0001; Fig. 6B),
and reject trials alone (r � �0.47, p �
0.0001; Fig. 6C). This strong negative cor-
relation is consistent with the idea that, in
addition to opportunity cost, dACC also
carries a profitability signal across both
accept and reject conditions.

To provide a more rigorous test of this
idea, we ran further Poisson regressions
using delay, reward size, and profitability
(reward size divided by delay) as regres-
sors. We regressed these variables against
firing rate on accept and reject trials sepa-
rately, and compared the deviance (a
goodness of fit measure) of this model
against a model that included delay and
reward size, but did not include profit-
ability (Fig. 6D). We then used a � 2 test
(df � 1) on the difference in deviance to
determine whether profitability signifi-
cantly improved the fit of the model for
that neuron. We found that profitability
was encoded in both accept and reject tri-
als, though more strongly in accept trials.
In the 500 –1000 ms epoch, we found that
profitability improved the fit of the model
for 29.0% of neurons (n � 36/124) for reject trials, and 46.0% of
neurons (n � 57/124) for accept trials. This difference is signifi-
cant (p � 0.006, z test for two population proportions). Of those
57 neurons that encoded profitability on accept trials, 43.9% (n �
25/57) positively encoded profitability and 56.1% (32/57) nega-
tively encoded profitability. This difference between positive and
negative encoding is not significant (p � 0.427, two-sided bino-
mial test). Of those 36 neurons that encoded profitability on
accept trials, 36.1% (n � 13/36) positively encoded profitability
and 63.9% (23/36) negatively encoded profitability. This differ-
ence between positive and negative encoding is not significant
(p � 0.133, two-sided binomial test). Our sliding boxcar analysis
suggests that the time when profitability is encoded most strongly
occurs at 420 – 450 ms.

We were curious to see whether the neurons that encoded
profitability were more or less likely to also encode the other task
variables, reward size, and delay. Because profitability is highly
correlated with reward size and delay, we decided to again use
deviance to see whether the same neurons that are modeled better
by including profitability are more or less likely to be better mod-
eled with profitability alone, or the full model (profitability, re-
ward size, and delay). First, we tested how many neurons had
their fits significantly improved by the addition of reward and
delay to a model initially including only profitability, using the
same procedure we used to look for improvements in model fit
for profitability (� 2 test with df � 2, on the difference in deviance,
using the 500 –1000 ms epoch). We found that more neurons
were significantly improved by going from a profitability-only

model to the full model than were significantly improved by go-
ing from a reward size and delay model to the full model (on
reject trials, of the population of 124 neurons, 62 neurons were
significantly improved going from profitability to the full model,
compared with the 36 being significantly improved going from
reward size and delay to the full model; 85 neurons compared
with 57 on accept trials; � 2 test on the difference in deviance,
significance cutoff of p � 0.05). These differences were significant
(p � 0.001 for both accept and reject, z test for two population
proportions), suggesting reward size and delay are more impor-
tant for modeling the neural responses than profitability is. Next,
we looked at the relationship between how much the full model
improved the fit of neurons over a model without profitability
versus how much the full model improved the fit of neurons over
a model without reward size and delay using the difference in
deviance as a measure of the improvement in fit. We found the
improvement gained by adding reward size and delay to a neu-
ron’s model was positively correlated with the improvement ac-
quired by adding profitability to a neuron’s model, for both
accept and reject trials (r � 0.797, p � 0.0001 for accept trials, r �
0.304, p � 0.001 for reject trials; Fig. 7A,B). As one might expect
from this correlation, most neurons that were significantly better
modeled by including profitability were also significantly better
modeled by including reward size and delay (on accept trials, 50
of 57 neurons that were significantly better fit with a model that
included profitability were also significantly better fit with a
model that included reward size and delay; 28 of 36 for reject
trials). This pattern suggests that the population of neurons en-
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coding profitability largely overlap with the population encoding
other task variables.

We next investigated whether encoding of profitability was
the same on accept and reject trials. If a neuron’s firing rate was
positively correlated with profitability on accept trials, it should
also be positively correlated on reject trials. Surprisingly, this was
not the case. Using the coefficients obtained with a Poisson re-
gression (regressing spike count against reward size, delay, and

profitability), we initially looked at the first 400 ms of the trials, as
this captured the entirety of the estimated decision time. We
found no correlation between the profitability regression coeffi-
cients (r � 0.030, p � 0.740; Fig. 7C). To ensure this negative
result was not caused by a poor choice of time-window or model,
we repeated this test on the first 250 ms, the first 500 ms, 250 –500
ms, and 500 –1000 ms, with and without reward size and delay
included in the regression, and found no significant correlations
or general trends (p 
 0.35 in all cases).

Reward anticipation
We noticed that activity of many cells ramped up in anticipation
of reward (Fig. 3A). This ramping up occurred 1–2 s before re-
ward time (a later epoch than we have examined so far). To
characterize this activity, we computed the firing rates of neurons
in the 1000 ms window preceding reward delivery in accept trials.
We excluded 2 s trials from this analysis to ensure that our antic-
ipation time window was separated from the time of the initial
decision. Thus, this prereward epoch begins 2– 8 s after the end-
ing of the epochs analyzed above.

We found that the firing rate significantly correlated with re-
ward size in 24.2% of our neurons (n � 30/124, Poisson regres-
sion). Of those reaching significance, 63.3% (n � 19/30)
correlated positively with reward, the remaining 36.7% (n � 11/
30) correlated negatively with reward. This bias toward positive
encoding is not significant (p � 0.200, two-sided binomial test).

We next considered the effect of delay on firing rate in the
same regression analysis. We found that responses of few neurons
encoded delay (16.9%, 21/124). Of the 21 neurons reaching sig-
nificance, nine correlated positively with delay and 12 negatively.

Postreward response
Whereas most studies of dACC neuronal responses have focused
on postreward responses, the present study has focused on pre-
reward responses. We next characterized the postreward re-
sponses in this task using a procedure similar to our analysis of
reward anticipation above. We computed the spike counts of
neurons in the 500 ms window following reward delivery in ac-
cept trials. This postreward epoch occurs 1–9 s after the peride-
cisional epochs analyzed above.

We found that the firing rate significantly correlated with re-
ward size in 28.2% of our neurons (n � 35/124, Poisson regres-
sion). Of those reaching significance, 57.1% (n � 20/35)
correlated positively with reward, the remaining 42.9% (n � 15/
35) correlated negatively with reward. This bias toward positive
encoding is not significant, p � 0.500, two-sided binomial test.

We next considered the effect of delay on firing rate in the
same regression analysis. We found that responses of few neurons
encoded delay (11.3%, 14/124). Of the 14 neurons reaching sig-
nificance, six correlated positively with delay, and 8 negatively.

Finally, we examined reward responses on the 20% of trials
that offered a gamble. These trials uniquely provide a test of
neural responses under uncertainty in our task. Twenty-two per-
cent of neurons (27 of 121 neurons that had gamble trials) differ-
entiated between receiving a reward and not receiving a reward
(two-sample t test on neural activity 500 ms following reward
delivery, or absence of reward delivery). Of these, 55.6% (15/27)
showed increased firing rate for a gamble win, the remaining
44.4% (12/27) showed decreased firing rate. This bias was not
significant (p � 0.414).

Discussion
Here we report the response properties of dACC neurons in an
accept–reject foraging task whose structure is modeled on a clas-
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sic foraging problem (Stephens and Krebs, 1987). On each trial,
monkeys made an accept–reject decision and then waited several
seconds for it to be resolved. Our goal was to understand the
contributions of dACC to choice processes. We find that firing
rates around the time of choice encode two distinct variables,
option profitability, and foregone reward. Foregone reward, the
inevitable reward missed by forsaking the unchosen option, is a
postdecisional variable. That means it depends on the choice the
animal makes, and cannot exist until the decision is made. Prof-
itability encoding in this task is also postdecisional because its
format (how neurons signal it and how strong the signal is) differs
on accept and reject trials. Thus, although it can be computed, its
format cannot be computed until the decision is made. Together,
these results place dACC downstream of choice processes that
evaluate options and compare them to make a decision. Based on
its anatomical connections, we propose that profitability signals
are generated in a ventral prefrontal area upstream of dACC that
implements the decision process (Paus, 2001). Potential loci for
this process include orbitofrontal cortex, ventromedial prefron-
tal cortex (vmPFC), and/or ventral striatum (Padoa-Schioppa
and Assad, 2006; Rushworth et al., 2011).

If the dACC does not play a role in the current decision, then
what does it do? Our results are consistent with the idea that
dACC does much the same thing around the time of the decision
that it does after the decision: it tracks variables related to out-
comes of decisions that may have some influence on the need to
adjust or alter behavioral strategies, or to bring greater cognitive
control to bear (Botvinick et al., 2001; Kerns et al., 2004; Hayden
et al., 2011a,b; Shenhav et al., 2013). Tracking foregone reward
and profitability are valuable because, in a dynamic environment,
switching is favored when foregone reward rises above the benefit
of the chosen option (Boorman et al., 2011).

In a previous study, we showed that dACC computes these
control variables even if the actual switching is weak and incon-
sistent (Hayden et al., 2011a). Others have also shown ACC ac-
tivity is sensitive to task variables even when no choice is required
(Sallet et al., 2007). Here, we extend these findings by showing
that dACC computes these parameters in a task where they have
no measurable effect on subsequent behavior. This finding sug-
gests that, contrary to our earlier predictions, coding of putative
control variables in dACC is not conditional on them being used
to drive behavior (Hayden et al., 2011a). Instead, it suggests that
they are subject to downstream gating processes that determine
whether they are implemented. Thus, these results suggest that
dACC is similar to the caudate nucleus, which can also compute
control signals that are not used to guide behavior (Chiu et al.,
2008). If the dACC control signals can, in the context of this task,
have little to no effect on behavior they suggest that, although
dACC is part of the control system, it plays a relatively early role
(cf. Schall et al., 2002).

The broader idea that dACC plays a regulatory role, rather
than serving as a comparator, is neither original nor new to us.
Several other groups have previously argued that the essential
role of dACC in cognition is to compute the need to adjust or alter
strategy; in summary, it serves as a controller over choice strategy
(Procyk et al., 2000; Botvinick et al., 2001; Holroyd and Coles,
2002; Kerns et al., 2004; Posner et al., 2007; Seo et al., 2007;
Quilodran et al., 2008). This interpretation unites diverse find-
ings linking dACC to the detection of errors, conflict, negative
outcomes (in some tasks), and positive outcomes (in other tasks)
by positing that dACC does not uniquely track any of these vari-
ables, but that its activity correlates with them incidentally, be-

cause they provide evidence in favor of switching (Hayden et al.,
2011a).

These results are consistent with the conclusions, but not the
specific results, of a recent important study on the role of dACC
in choice (Cai and Padoa-Schioppa, 2012). Using a different task,
the authors of that study found strong encoding of the chosen
value, another postdecisional variable. Like us, they came to the
conclusion that dACC does not play a direct role in choice. How-
ever, whereas we found that foregone reward was strongly en-
coded in our task, the most analogous variable in their task
(“other value,” the value of the option not chosen) was not
strongly represented. There are several possible explanations for
the discrepancy between our study and theirs. One possibility is
that, because the temporal structure of their task includes reward
delivery shortly after choice (750 ms), reward expectancy signals
may overlap with and hide any foregone value signals. Indeed, we
report here that reward expectancy signals are present at least one
second before reward delivery in our task. Another possibility is
that the monkeys in that study followed a choice strategy that led
to ignoring the unchosen option (or considering it very briefly),
and so these signals do not have a chance to make their way from
upstream areas to dACC. A third possibility is that accept–reject
choices are framed differently from two-option choices, a possi-
bility supported by recent fMRI work showing different func-
tions of ACC and vmPFC in binary choices versus accept–reject
foraging choices (Kolling et al., 2012) and in two seemingly sim-
ilar gambling tasks (Hunt et al., 2013).

In an earlier study, we found that dACC neurons track fictive
outcomes of decisions (Hayden et al., 2009). These fictive out-
come findings are consistent with other results demonstrating
coding of hypothetical outcomes in ACC (Boorman et al., 2011),
and more broadly with the idea that dACC tracks decisional re-
gret (Coricelli et al., 2005). Collectively, these results indicate that
dACC does not simply carry a labeled line representation of ac-
tual reward size, but that it strongly represents rewards not re-
ceived or not chosen. The present results suggest a different, and
more general, interpretation of these earlier results: dACC does
not track fictive outcomes (or any outcomes) per se, but signals
the need to adjust strategies that comes from fictive outcomes.
Fictive and hypothetical outcomes are often closely associated
with switching or adjusting behavior (Hayden et al., 2009). We
suspect that it is these signals originating within dACC that are
responsible for the effects of hypothetical outcomes on behav-
ioral changes and adjustments.
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