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Blanchard TC, Strait CE, Hayden BY. Ramping ensemble ac-
tivity in dorsal anterior cingulate neurons during persistent commit-
ment to a decision. J Neurophysiol 114: 2439-2449, 2015. First
published September 2, 2015; doi:10.1152/jn.00711.2015.—We fre-
quently need to commit to a choice to achieve our goals; however, the
neural processes that keep us motivated in pursuit of delayed goals
remain obscure. We examined ensemble responses of neurons in
macaque dorsal anterior cingulate cortex (dACC), an area previously
implicated in self-control and persistence, in a task that requires
commitment to a choice to obtain a reward. After reward receipt,
dACC neurons signaled reward amount with characteristic ensemble
firing rate patterns; during the delay in anticipation of the reward,
ensemble activity smoothly and gradually came to resemble the
postreward pattern. On the subset of risky trials, in which a reward
was anticipated with 50% certainty, ramping ensemble activity
evolved to the pattern associated with the anticipated reward (and not
with the anticipated loss) and then, on loss trials, took on an inverted
form anticorrelated with the form associated with a win. These
findings enrich our knowledge of reward processing in dACC and
may have broader implications for our understanding of persistence
and self-control.

persistence; dorsal anterior cingulate cortex; anticipatory activity;
reward signaling

MANY REWARDS require persistent commitment to a choice
before we obtain them. For example, marathon runners need to
continue running to finish a race, predatory animals need to
chase down their prey, and scientists need to spend many hours
performing research to get published. Persistence is a central
component of self-control, the ability to pursue a goal despite
impulses to do otherwise (de Ridder et al. 2012).

Despite its importance, we know very little about the neural
processes that occur during persistent commitment to a deci-
sion. Information about these neural processes, especially in
brain regions linked to self-control, could help us to understand
the neural mechanisms of persistence and, ultimately, self-
control. We are particularly interested in the dorsal anterior
cingulate cortex (dACC). The dACC has been associated with
successful self-control in a number of contexts, including an
intertemporal choice task (Peters and Biichel 2010), delay tasks
(Narayanan et al. 2006; Narayanan and Laubach 2006), re-
sponse inhibition tasks (Floden and Stuss 2006), and forced
swim tasks (Warden et al. 2012). Activation of human dACC
produces intense feelings of the will to persevere against
challenges (Parvizi et al. 2013). One possibility is that the
association between dACC and self-control is due to the role of
dACC in facilitating persistence (Chudasama et al. 2013;
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Picton et al. 2007). Although this cortical region has been
closely linked to persistence, its precise role in this process
remains unclear (Gusnard et al. 2003; Parvizi et al. 2013).

Previous research has shown that activation of the brain’s
reward circuitry is critical for successful persistence (Gusnard
et al. 2003; McGuire and Kable 2015). One possibility is that
brain activation elicited by an expected reward may serve to
maintain motivation and ensure successful persistence (Howe
et al. 2013). One way it could do this is to actively maintain a
value signal that allows for decision-makers to overcome a
tendency to succumb to temptation (Hillman and Bilkey 2010).
Thus the evaluation and representation of expected rewards
may be a critical part of persistence. Consistent with this idea,
the ACC has been found to be critical for reward processing,
particularly with respect to expected rewards (Alexander and
Brown 2010; Amiez et al. 2006; Bush et al. 2002; Sallet et al.
2007).

Although the responses of dACC neurons during persistence
remain unknown, studies have shed light on their function in
similar contexts. In tasks requiring multiple steps before a
reward is given, ensembles of putative dACC neurons in rats
show a ramplike change in activity as the animals progress to
a reward (Ma et al. 2014; Shidara and Richmond 2002).
Similar ramping patterns have been found in macaque dACC
(Hayden et al. 2011b; Toda et al. 2012). Numerous functions
have been suggested for this ramping activity, such as keeping
track of progress toward a reward (Ma et al. 2014; Shidara and
Richmond 2002), timing an interval (Durstewitz 2003), and
deliberate inhibition of an inappropriate action during a delay
(i.e., persistence; Narayanan and Laubach 2006, 2009). Despite
the functional importance of this ramping activity, little is
known about the information it carries.

We analyzed the activity of dACC neurons in rhesus ma-
caques as they performed a foraging task—specifically, a diet
selection task—that required them to maintain fixation through
a delay to receive a reward (Blanchard and Hayden 2014). On
each trial, animals decided whether to accept or reject an
option based on the reward size and delay being offered. To
accept an option, subjects were required to fixate on the option
throughout the delay, an action that requires a persistent
commitment but probably very little effort. To reject, subjects
had to avert their gaze.

Throughout prefrontal cortex and dACC, neurons have char-
acteristic responses to rewards (see, e.g., Azzi et al. 2012;
Blanchard et al. 2015; Blanchard and Hayden 2014; Strait et al.
2014; Toda et al. 2012; Wallis and Kennerley 2011). We found
that throughout the delay neurons in our population gradually
changed their activity to these characteristic responses, even on
trials with risky options (which offered a 50% chance of
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reward). After a risky loss (no reward), neural responses took
an inverted form—those that were excited by reward receipt
tended to be inhibited and vice versa. We also found that the
formats neurons used to encode reward size (that is, the
ensemble pattern of responses) were different during the choice
epoch of the task and when the reward was delivered. The
coding format of anticipated reward size quickly changed
shortly after the choice epoch but came to resemble the coding
format used during the reward epoch prior to the delivery of
reward. Thus, despite the receipt of reward being a discrete
event occurring on a very short timescale, neurons were re-
sponding to reward size just prior to the actual receipt of the
reward similarly as they did immediately after reward receipt.

These findings suggest that similar neural processes are
active during persistence and reward receipt. We speculate that
the reward representation we observe gradually arising when a
reward is anticipated may facilitate persistence (Hillman and
Bilkey 2010).

MATERIALS AND METHODS

Ethics statement. All procedures were approved by the University
of Rochester Institutional Animal Care and Use Committee and were
designed and conducted in compliance with the Public Health Ser-
vice’s Guide for the Care and Use of Laboratory Animals.

Task. On each trial of our task, an option appeared at the top of the
screen and moved smoothly at a constant rate downward. All options
were horizontally oriented rectangles 80 pixels high and of variable
width (60-300 pixels; Fig. 1). Option color indicated reward value:
orange (0.075 ml), gray (0.135 ml), green (0.212 ml), or cyan (0.293
ml). In addition to these four colors, one-fifth of the options were
divided horizontally into half-cyan and half-red portions; these of-
fered a 50% chance of receiving a 0.293-ml reward and a 50% chance
of receiving no reward. Option width indicated the delay associated
with that option. Option widths were 60, 120, 180, 240, and 300 pixels
and corresponded to delays of 2, 4, 6, 8, and 10 s, respectively. Each
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Fig. 1. Task and recording location. A: be-
havioral task. Delayed rewards, represented
by horizontally oriented rectangles, ap-
peared on the screen. Options differed in
their reward size (indicated by color) and
delay (indicated by width). Monkeys ac-
cepted an option by fixating or rejected by
averting gaze. If accepted, the rectangle
would shrink at a constant rate, and reward
would be delivered when it had shrunk com-
pletely. If rejected, no reward would be de- B
livered. See MATERIALS AND METHODS for
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possible option (25 options, 5 widths X 5 colors) appeared with equal
frequency; width and color were selected randomly and independently
on each trial.

Two male rhesus macaques (Macaca mulatta; monkey B and
monkey J) performed the task. On each trial, a subject could select an
option by fixating it or reject the option by avoiding direct gaze on it.
In the absence of any action, each option took 1 s to move vertically
downward from the top of the display area of the computer monitor to
the bottom, after which time it disappeared and could no longer be
chosen. In this case, the trial would end and a 1.5-s intertrial interval
(ITT) would begin. If the monkey selected an option by fixating it, the
option would stop moving wherever it was and then would begin to
shrink horizontally. Shrinking rate was constant (30 pixels/s), and thus
option width served to identify the total remaining delay associated
with each option.

If the monkey averted its gaze from the option during the shrinking
phase, the option would (after a 0.25-s grace period) continue its
movement toward the bottom of the screen. As it moved its width
would remain at what it had been when gaze was averted, and if it was
fixated upon again it would again pause and begin shrinking from its
new, smaller width. If at any point the monkey held an option until it
shrunk entirely, the appropriate reward would be delivered, the trial
would end, and a 1.5-s ITIT would follow.

Behavioral techniques. Horizontal and vertical eye positions were
sampled at 1,000 Hz by an infrared eye-monitoring camera system
(EyeLink 1000, SR Research, Mississauga, ON, Canada). We wrote
our experiments in MATLAB (MathWorks), using the Psychophysics
and Eyelink Toolbox extensions. A standard solenoid valve (Parker,
Cleveland, OH) controlled the duration of water delivery. Immedi-
ately before recording, we performed a careful calibration of our
solenoid system to establish a precise relationship between solenoid
open time and water volume in our rigs.

Surgical procedures. Two male rhesus monkeys (M. mulatta)
served as subjects. Initially, a head-holding mount was implanted with
standard techniques. Four weeks later, animals were habituated to
laboratory conditions and trained to perform oculomotor tasks for
liquid reward. A second surgical procedure was then performed to

2-10 seconds (based on length)
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place a 19-mm plastic recording chamber (Crist Instruments) over
dACC (32 mm anterior, 7 mm medial interaural). Animals received
analgesics and antibiotics after all surgeries. The chamber was kept
sterile with regular antibiotic washes and sealed daily with sterile
plastic caps.

Microelectrode recording techniques. Single electrodes (Frederick
Haer; impedance range 0.8 -4 M()) were lowered with a microdrive
(NAN Instruments) until the waveform of one or more (1-3) neu-
ron(s) was isolated. Individual action potentials were identified by
standard criteria and isolated on a Plexon system (Plexon). Neurons
were selected for study solely on the basis of the quality of isolation
and never on the basis of task-related response properties.

We approached dACC through a standard plastic recording grid
(Crist Instruments). dACC was identified by structural magnetic
resonance images taken before the experiment and concatenated with
Brainsight (Rogue Research). Neuroimaging was performed at the
Rochester Center for Brain Imaging, on a Siemens 3-T MAGNETOM
Trio TIM using 0.5-mm voxels. Chamber placement was reconciled
with Brainsight. We also used Brainsight to guide placement of grids
and to determine the location of our electrodes. We confirmed record-
ing locations by listening for characteristic sounds of white and gray
matter during recording, which in all cases matched the loci indicated
by the Brainsight system with an error of <I mm. Our recordings
came from areas 6/32 and 9/32 according to the Paxinos atlas.

Vector analyses. To analyze our population of neurons, we made
use of vector analyses. For these analyses, we took some measurement
from each neuron—either the normalized activity of the neuron or a
regression coefficient of reward size onto normalized firing rate—for
a specific time window. The measurement values for each neuron
were then placed into a vector, giving us a vector of length n, where
n is the number of neurons used in the analysis. We then compared
this vector to vectors coming from another time window and mea-
sured the difference (or similarity) of the vectors to each other. This
allowed us to measure how similarly our entire population of neurons
was acting in two different time windows.

Euclidean distance. We used Euclidean distance as one of our
measurements of the difference between two vectors. The Euclidean
distance is a standard distance measurement that describes the length
of a straight line connecting the two end points of two vectors. The
equation for Euclidean distance between two vectors p and ¢ is

d(p.q) =\ 211 (4 — pi)’

where n is the number of dimensions (here, the number of neurons)
and ¢; and p; refer to the value of element i in vectors g and p (the
value of the ith neuron), respectively.

Cross-validation for vector analyses. Including all trials in our
vector analyses (i.e., Figs. 3, 4, and 5C) would lead to inflated
correlations, especially when comparing temporally close windows,
as shared neural noise would drive both vectors in the same direction.
Therefore, for each neuron we selected half of the trials (even-
numbered trials) to form what would be our template vector and the
other half for our comparison vector. For our coding format vectors,
we regressed firing rate onto reward size separately for each half, and
the regression coefficients formed the vectors we would compare. For
our activity pattern vectors, we simply took the mean firing rate from
each half. Thus there was no overlap in the data used to generate the
two vectors.

RESULTS

The data presented here are a new analysis of a data set
previously summarized in Blanchard and Hayden (2014).

Behavioral results. Our diet selection task is based on a
well-known problem from foraging theory (Krebs et al. 1977;
Stephens and Krebs 1987). On each trial, monkeys could
accept or reject the offer of a delayed reward that appeared on
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a computer monitor. Options differed on two dimensions:
offered reward size and delay to that reward if chosen (Fig. 1,
A and B; see MATERIALS AND METHODS). No other offers appeared
during the delay (which is called handling time in foraging
theory), so delays imposed an opportunity cost. Thus reward-
maximizing behavior in this task requires sensitivity to both the
reward size and the delay length of options (Blanchard and
Hayden 2014; Stephens and Krebs 1987). As described in
detail in another report, both animals quickly learned the task
and performed near-optimally (Blanchard and Hayden 2014).
Consistent with our previous studies, monkeys were more
likely to accept options with large reward sizes and less likely
to accept options with long delays [logistic regression of
acceptance onto reward size and delay length, reward size 3 =
1.78, 1(38830) = 84.82, P < 0.0001; delay length B = —2.19,
1(38830) = —93.03, P < 0.0001; Blanchard et al. 2013;
Blanchard and Hayden 2015; Pearson et al. 2010]. See
Blanchard and Hayden (2014) for a more detailed analysis of
behavior in this task.

dACC activity correlates with anticipated reward size
throughout the entire trial. We recorded responses of 124
neurons in the dACC of two monkeys performing the diet
selection task (n = 74 in monkey B, n = 50 in monkey J; Fig.
1C shows the recording position). Of these neurons, 3 (all from
monkey B) were from a version of the task that involved no
risky trials; we excluded these 3 neurons from all analyses in
the present study and focus here on the remaining 121. Aside
from this, we did no preselection or screening for neurons
during data collection or prior to analysis. In our previous
study, we focused on the differences between accept and reject
trials (Blanchard and Hayden 2014). Given our interest in
persistence and in reward anticipation here, we focused exclu-
sively on accept trials (61.4% of all trials), as no persistence
was required during reject trials.

We focused first on the safe reward trials (80% of all offers).
A basic event-aligned firing rate histogram revealed a burst of
activity around the time of choice and the time of reward (Fig.
2A). Given the long-lasting nature of the bursts, we were
concerned that the neural responses during the 2-s-delay trials
would look significantly different from the longer-delay trials,
possibly obscuring anticipation signals immediately before the
reward. We therefore omitted these trials in our analyses of
reward anticipation, unless otherwise noted.

We next looked for reward size correlations around the time
of choice and reward delivery, using standard linear regression
techniques. We wished to study the neural responses at the
time of choice. In a previous study of this data set, we used
behavioral data to estimate that the time of the decision is
between 300 and 400 ms after option appearance in this task
(Blanchard and Hayden 2014). This period corresponds to the
peak of the initial rise in reward encoding we observe (Fig.
2B). We chose to define the choice epoch to be the same, but
with some additional room to account for potential variability
in neuronal latencies. Specifically, we used a 200-ms window
from 250 to 450 ms after option appearance. Note that we use
the term “encoding” of some variable to refer to correlations
between firing rate and that variable.

We found that activity in 17.4% (21/121) of neurons was
correlated with expected reward size during the choice epoch
(linear regression, a« = 0.05). This proportion is significantly
greater than the proportion expected by chance (P < 0.001,
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binomial test). Using a sliding boxcar analysis (boxcar width:
200 ms; step size: 10 ms), we found that the proportion of
neurons whose activity was correlated with reward size re-
mained relatively constant throughout the delay (Fig. 2B). We
found that the population of neurons quickly responded to
reward (Fig. 2A). Visual inspection revealed that the firing rate
peaked around the time of delivery (Fig. 2B). We thus chose
the 200-ms window beginning at reward delivery as our reward
epoch. In the reward epoch, 20.7% (25/121) neurons signifi-
cantly encoded reward size. This proportion is significantly
greater than the proportion expected by chance (P < 0.001,
binomial test). Thus we found quite modest but nonetheless
significant correlations between firing rates and reward size,
which appeared by conventional analyses to remain relatively
constant in their preponderance throughout the various phases
of the task.

Ensemble activity pattern gradually shifts toward reward
state through delay. Average population firing rate provides
little information about the pattern of activity changes. In
particular, when averaging, neurons that increase their firing
rate over the course of the delay could be counterbalanced with
neurons that decrease their firing rate. This mixture of positive
and negative responses to task variables is a ubiquitous feature
of dACC and the prefrontal cortex more generally (Blanchard
et al. 2015; Blanchard and Hayden 2014; Rigotti et al. 2013;
Strait et al. 2014). Therefore, we next examined how the
pattern of activity changed throughout the delay period.

We have opted to investigate ensemble responses, as op-
posed to traditional within-neuron analyses, for two reasons.
First, because of the plurality of response profiles often found
in dACC neurons, the use of conventional within-cell measures
becomes difficult (cf. Ma et al. 2014). A simple linear trend
may be found to be significant either when a neuron shows a
smooth ramping in activity or when it shows no change in
activity until a brief phasic burst. Second, we are interested
here in describing how a signal in a population of neurons
evolves over time. By using population-level measures to
describe the changes in neural activity over the course of the
trial, we are able to ask how the state of the ensemble of
neurons is changing, instead of how each individual neuron is.

Our methods allowed us to get around the issues with
looking for gradual changes in activity at the single-neuron
level. These methods also provide an intuitive population-level

statistic instead of taking the additional step to summarize the
statistics done on each neuron individually. However, we
should stress that these methods are actually conceptually very
simple—relying only on simple measures like Euclidean dis-
tance and correlation.

To study ensemble activity patterns, we formed normalized
activity vectors with 121 elements each; each element corre-
sponded to the normalized firing rate of a particular neuron
during a 200-ms window. We could then use measures of
similarity or distance between these vectors to judge how
similar the pattern of activity in the population is within any
two time windows.

We first used Euclidean distance to measure how similar two
activity patterns were (MacEvoy and Epstein 2009). This
technique measures distance between end points of vectors in
an N-dimensional space, where a dimension is the firing rate of
a specific neuron. The closer two vectors are, the more similar
their patterns of activity. We used a simple cross-validation
procedure to eliminate spurious similarities in the vectors
caused by shared noise (see MATERIALS AND METHODS). We
separated trials by delay length so we could investigate how
activity patterns changed over the course of different delays.
Because the subjects were unlikely to accept options with
delays of 10 s, and we were therefore severely data-limited for
this condition, we did not include options of delay 10 for this
analysis. A minority of neurons (n = 15) were from sessions in
which the animal accepted fewer than five options of delay 8,
and thus we removed these neurons and used the remaining
106 neurons for the delay 8 analysis. We then ran two sliding
boxcar analyses, one comparing activity in a sliding window to
activity in a fixed window, the choice epoch normalized
activity vector (Fig. 3A), and another comparing activity in the
sliding window to the reward epoch normalized activity vector
(Fig. 3B) for each delay length. We normalized the distance
measure to be 1 at the greatest distance the vectors reached and
0 at the lowest distance.

We found that, regardless of delay length, there was only a
brief period during which the sliding boxcar normalized activ-
ity vector was similar to the choice epoch normalized activity
vector (Fig. 3A). Not surprisingly, the distance between the two
vectors was lowest when the boxcar partially overlapped with
the choice epoch. However, after this period, the boxcar
activity became dissimilar quite rapidly. Specifically, the nor-
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Fig. 3. Euclidean distance between activity pattern vectors shows gradual ramping toward reward activity pattern. A and B: ensemble activity pattern analysis
using Euclidean distance: distance between the normalized activity vector from a running boxcar and the normalized activity vector from the choice epoch (A)
and the reward epoch (B). Trials are separated out by delay length; color indicates the specific delay length. The ensemble activity pattern changes rapidly after
the choice epoch and gradually comes to resemble the reward epoch pattern. Vertical lines indicate the start or end of a trial.

malized distance increased by 0.842 [bootstrapped 95% con-
fidence interval (CI): 0.732—0.958] just 500 ms later (averag-
ing across all duration conditions). In contrast to this rapid
change with the choice epoch, we observed a slow and gradual
increase in similarity between the sliding boxcar normalized
activity vector and the reward epoch normalized activity vector
throughout the duration of the trial. Thus from 500 ms after the
choice epoch to 500 ms before the reward epoch, the normal-
ized distance decreased significantly but by a small amount:
0.247 (95% CI: 0.196-0.312). The distance then decreased
more rapidly in the final 500 ms before the reward, decreasing
by 0.720 during this period (95% CI: 0.665-0.723).

This gradual ramping indicates that the pattern of activity
shifts gradually toward the pattern of activity it will be in after
receiving the reward. This gradual shift in activity is similar to
that observed previously in dACC neurons while animals
performed a task with explicit discrete steps that need to be
performed in order to receive the reward (Ma et al. 2014).

Gradual shift in activity pattern vectors can be seen by using
correlation as a similarity measure. Next, we wanted to ensure
that the gradual ramping that we saw toward the reward
activity pattern during the delay was not due to the similarity
measure that we used. Thus we performed the same analysis,
but using correlation instead of Euclidean distance. Positive
correlation between two normalized activity vectors indicates
that neurons are being modulated in similar ways in the two
cases, independent of the overall population activity level
(because correlation subtracts the means of the vectors). A
correlation close to 0 means there is little relationship between
the pattern of activity in the two vectors. To reduce noise, we
did not separate trials by delay for this analysis.

Our analysis using correlation showed the same qualitative
pattern of results as our analysis using Euclidean distance. The
sliding boxcar normalized activity vector was only briefly
highly correlated with the choice epoch normalized activity
vector (Fig. 4A). They were significantly correlated only from
the window beginning 530 ms before the choice epoch to the
one beginning 370 ms after it, a total of 900 ms. It is notable
that this significant correlation occurs prior to the beginning of
the trial. We suspect that this early ramp-up is due to antici-

pation of the beginning of the trial. The ITI was constant
(always 1.5 s), and thus the beginning of the trial could be
predicted by the animal. Thus this early rise in correlation
could be due to a rise in arousal or attention prior to the trial
beginning or activity in preparation of choice or motor control.
There was an increase of 0.701 in the correlation coefficient
from when it first reached significance to the choice epoch (r =
0.187 530 ms before choice epoch to » = 0.887 during choice
epoch). Thus the correlation increased by 0.701 over 530 ms,
an increase of 0.132 per 100 ms.

In contrast, the correlation between the boxcar and the
reward epoch normalized activity vector increased more grad-
ually. The correlation reached significance 1,380 ms prior to
the reward epoch. At 1,380 ms prior to the reward epoch, the
correlation coefficient was 0.180, and at the time of the reward
epoch it was 0.938. Thus there was a change of 0.758 over a
period of 1,380 ms, a change of 0.055 per 100 ms. The
correlation remained significant until 730 ms after the reward
epoch, for a total of 2,110 ms (Fig. 4B).

Interestingly, the boxcar and the reward epoch vector were
briefly anticorrelated during a period immediately after the
choice. Specifically, the boxcars from 580 ms to 1,910 ms after
the choice epoch showed significant negative correlation with
the reward epoch’s normalized activity vector (Fig. 4B). The
significance of this negative correlation is unclear. This nega-
tive correlation reached its most extreme 1,150 ms after option
appearance (r = —0.325). We thus compared when the box-
car’s correlation significantly differed from this low point. We
found that the boxcar’s correlation with the reward epoch was
significantly different from this low point beginning 2,290 ms
prior to the reward epoch. If this point is used as the beginning
of the significant rise in correlation, there is a change of 0.45
per 100 ms (» = —0.085 2,290 ms before the reward epoch to
r = 0.938 during the reward epoch). In other words, the
positive increase in correlation began early in the trial and had
to first overcome this early negative correlation before becom-
ing significantly positive.

Reward size coding format changes between choice and
reward epochs. Next, we investigated how the coding of
reward size changed throughout the delay. Given that the

J Neurophysiol » doi:10.1152/jn.00711.2015 « www.jn.org



2444

>

| trial start reward

m—

more similar to
choice epoch

(wyva

-0.4 —

less similar to
choice epoch

—

correlation with choice normalized activity vector

1 0 1 2
time (sec)

—

more similar to
choice epoch

less similar to
choice epoch

R

correlation with choice coding format

3 -3 -2 -1 0 1

time (sec)

3 -3 -2 -1 0 1

RAMPING ENSEMBLE ACTIVITY IN dACC

B
o trial start reward
o 1
()
e - >
- >
s 8 0.8}
ES
‘® o
o3 0.6}
o =
IS
0.4}
0.2}

P

less similar to
reward epoch

—

correlation with reward normalized activit

-0.2
04—+ 3 S5 =5 T o
time (sec)
D
rial st
506 trial start reward
o - ME
ss o |
EG | £
5_9 '80.4‘
Sl ©
el |
0.2

less similar to
reward epoch

<

correlation with reward delive
o

S
o
:

2 33 =2 4 0 1
time (sec)

'
-
(@)
—_

Fig. 4. Correlation between activity pattern vectors and coding format vectors shows gradual ramping toward reward activity pattern and coding format. A and
B: ensemble activity pattern analysis: the correlation between the normalized activity vector from a running boxcar with the normalized activity vector from the
choice epoch (A) and the reward epoch (B). The ensemble activity pattern changes rapidly after the choice epoch and gradually comes to resemble the reward
epoch pattern. C and D: coding format analysis: the correlation between the coding format vector from a running boxcar with the coding format vector from the
choice epoch (C) and the reward epoch (D). The coding format changes rapidly after the choice epoch and gradually comes to resemble the reward epoch format.
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proportion of neurons encoding reward size was similar
between the choice and reward epochs, we wondered
whether neurons used similar formats to encode this vari-
able during these two epochs. To investigate this, we cal-
culated the correlation between the coding formats for
reward size during the choice and reward epochs. We used
the regression coefficient from a linear regression of reward
size onto firing rate as our measure of the coding format of
an individual neuron (our term for the linear tuning prop-
erties of an individual neuron). Similar to our analysis using
the normalized activity vectors to investigate ensemble
activity patterns, we formed coding format vectors. Our
coding format vectors were of length 121, with each element
of the vector being a regression coefficient from a linear
regression of firing rate onto reward size. We then calcu-
lated the correlation between these vectors.

It is worth emphasizing that our analysis approach differs in
some ways from conventional analysis approaches, including our
own past studies. Typically, we have focused on characterizing
single neurons and then assessing the frequency of neurons similar
to that in the population. Instead, here we ask what the population
as a whole was doing, and what information it encoded. This
approach has several advantages. First of all, it does not penalize
neurons for diversity of response properties. Second of all, it is a
more sensitive approach statistically. There are many cases where
neurons show some effect but do not achieve significance indi-
vidually, but show a strong effect when grouped together. The
regression coefficient, even if not significant, remains the best
estimate of a neuron’s linear tuning to reward size. Third, the
approach allows us to consider all neurons, rather than just a
subset of significant ones, reducing the likelihood of double-
dipping or voodoo correlations.
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We found that the coding format vectors from the choice
epoch and the reward epoch were not significantly correlated
with each other (although there was a nonsignificant trend
toward positive correlation, » = 0.059, P = 0.052, 95% CI:
—0.120 to 0.235). Thus neurons in our population had no
general tendency to respond similarly in the choice and reward
epochs.

To further examine how coding format changed over time,
we compared the choice epoch coding format vector to all
other 200-ms windows in the trial (again using a sliding boxcar
with 10-ms steps). To eliminate spurious correlations caused
by shared neural noise, we continued to use the same cross-
validation procedure as we did for the normalized activity
vector analyses. Although much noisier, we found that the
change in coding formats throughout the delay shared some of
the same properties as the change in normalized activity
vectors. The correlation between the sliding boxcar coding
format vector and the choice epoch coding format vector only
reached significance around the choice epoch (the boxcar
beginning 210 ms before the choice epoch to the boxcar 280
ms after were significantly correlated with the choice epoch
coding format; Fig. 4C). In other words, even though dACC
encoded reward size throughout the delay (Fig. 2B), the tuning
of individual neurons to reward changed after the choice
epoch.

We then repeated this analysis but used the reward epoch as
our fixed period. We found a significant correlation between
sliding boxcar coding format vector and the reward epoch
coding format vector prior to reward delivery (Fig. 4D). Spe-
cifically, we found a significant correlation beginning with the
boxcar 570 ms prior to reward delivery. Further examination of
the data revealed periods of significance prior to this, such as
a period from 1,970 ms to 1,140 ms prior to the reward epoch.
Thus we suspect that the lack of a significant correlation from
1,140 ms to 560 ms is likely attributable to noise (Fig. 4D). The
high correlation prior to reward delivery indicates that dACC
used similar coding formats to encode reward value before and
after anticipated rewards. This lack of a shift in coding
schemes suggests that dACC does not strongly differentiate
anticipated from received rewards. One possible explanation is
that dACC is not simply signaling reward value but may
instead be generating signals involved in different types of
control that correlate with reward value, and that these control
processes are not particularly sensitive to the delivery of the
reward itself (cf. Hayden et al. 2009, 2011a).

Timing of reward response. It is possible that our chosen
reward epoch (0-200 ms after reward onset) may be too early
to have included the neurons’ responses to reward delivery and
instead reflects anticipatory activity. To investigate this possi-
bility, we plotted the populations’ mean firing rate around the
time of reward (Fig. 5A). This plot shows that the neural
response to reward occurs rapidly and actually begins to drop
off quickly after the time bin we used. Next, we investigated
the proportion of neurons that significantly encoded reward
(Fig. 5B). We found an odd dip in reward size encoding shortly
after the 0-200 ms bin, and then a second peak slightly later.
One possibility is that this first peak represents the peak of
anticipatory activity, while the second is the peak of the actual
reward response. The 100-300 ms bin occurs right in the
middle of this second peak (whereas the 200—400 ms bin
occurs after the peak). We therefore reran our key analyses,
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using the 100-300 ms bin as our reward epoch. We find that
this does not qualitatively change our results (Fig. 5, C and D).

Strategy adjustment following risky loss trials. We and
others have previously argued that dACC responses instantiate
explicit control signals that lead to a behavioral adjustment on
the next trial (Botvinick et al. 2001; Hayden et al. 2011a,
2011b; Quilodran et al. 2008; Shenhav et al. 2013; Shima and
Tanji 1998). In our task, monkeys exhibited greater reluctance
to choose risky options after risky loss than after wins, sug-
gesting that the brain generates control signals that adjust risk
preferences after risky outcomes (0.223 rejection rate after
risky win, 0.271 after risky loss; P < 0.0001, 95% CI:
6.9-2.8% difference in proportion, binomial 2-sample test; Fig.
6A). We hypothesized that behavioral adjustment signals may
be present in ensemble activity in dACC.

Activity pattern changes in response to risky options. We
next asked whether behavioral adjustment signals could be
observed after outcome on risky trials (cf. Hayden et al. 2008,
2011a). After risky losses, neurons exhibited a sustained in-
crease in firing rate compared with the firing rate after a risky
win or safe reward (Fig. 6B; 6.84 spikes/s on risky wins, 7.30
spikes/s on safe trials, 8.86 spikes/s on risky losses). The
normalized activity vector from risky loss trials during this
time was negatively correlated with the normalized activity
vector from the reward epoch of safe reward trials. Specifi-
cally, comparing the normalized activity vector for 800-1,000
ms after an unsuccessful risky outcome to the first 200 ms after
a certain reward receipt, r = —0.331, P < 0.0001. We chose
this epoch because it is when the response is strongest, but
adjacent periods also showed significant negative correlations
(r = —0.233, P = 0.010 and r = —0.213, P = 0.019 for
600-800 ms and 1,000-1,200 ms after reward receipt, respec-
tively). There was also a significant negative correlation if the
entire period from 500 to 1,500 ms after reward was used (r =
—0.258, P = 0.004). This negative correlation means that
neurons that tend to be excited compared with baseline during
safe reward delivery will be suppressed after a risky loss, and
vice versa, thus acting as a “no-reward” signal. We suspect that
this negative correlation occurs some period after the outcome
resolution because there was no explicit cue to the animals that
they would not receive a reward. Instead, the lack of a reward
had to be inferred from the combination of the visual stimulus
disappearing and the lack of a liquid reward delivery.

These vectors were negatively correlated despite the mean
population firing rates being very similar during these two
periods (Fig. 6C). Specifically, the mean firing rate was 8.86
spikes/s for the risky loss trials vs. 8.82 spikes/s in the reward
epoch following safe reward delivery. The similarity in the
mean firing rates means that this signal would be invisible with
aggregate measures of neural activity such as fMRI. The
negative correlation we observe is consistent with the intuitive
notion that risky losses and safe outcomes elicit opposing
control signals, creating a possible link between the early
ensemble ramping activity and control (Hayden et al. 2011b).

DISCUSSION

We measured responses of dACC neurons as monkeys
performed a foraging task that required persistent commitment
to a decision. We found that, throughout the delay prior to
receiving a reward, the ensemble activity pattern in our popu-
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lation gradually came to resemble the ensemble activity pattern
associated with receiving a reward. Although reward size was
encoded during the choice and reward epochs, the coding
format (meaning the ensemble tuning function) used to encode
this variable was different during these two epochs. Much like
the changes in the ensemble activity pattern, we found that the
coding format of anticipated reward size quickly changed
shortly after the choice epoch but came to resemble the coding
format used during the reward epoch prior to the delivery of
reward. Thus, despite the receipt of reward being a discrete
event occurring on a very short timescale, neurons were re-
sponding to reward size just prior to the actual receipt of the
reward similarly as they did immediately after reward receipt.
In other words, there was no qualitative difference between
anticipatory reward encoding and the encoding of a received
reward. One possibility is that this emerging reward represen-
tation through the trial may serve to promote persistence
(Hillman and Bilkey 2010).

Prior to the reward epoch, on the subset of trials with risky
rewards, the ensemble of neurons showed a smooth ramping

toward the pattern of activity evoked in response to a large and
riskless reward. This ensemble ramping response was similar
to the ensemble ramping found during safe trials. After a risky
loss, ensemble activity pattern became not just uncorrelated but
negatively correlated with the reward delivery state, meaning
that neurons that were typically excited during reward delivery
were typically inhibited after a risky loss, and vice versa. This
rebound effect suggests that dACC encodes failure to receive a
hoped-for reward by encoding its antithesis, one of the defining
properties of reward prediction error (RPE) signals. Notably,
this signal was not observed in average firing rates (and thus
may potentially be invisible to aggregate methods like fMRI).
The ensemble methods used in the present study allowed us to
achieve a high-level view of how the population of neurons
changed their activity over time. Instead of just investigating
how and when individual neurons were changing, we instead
were able to describe how the population shifted from one state
to another. Thus it should be noted that the ensemble ramping
activity we describe here is not necessarily the same as ramp-
ing activity observed in individual neurons. Instead, the en-

J Neurophysiol » doi:10.1152/jn.00711.2015 « www.jn.org



RAMPING ENSEMBLE ACTIVITY IN dACC

following
risky win

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

following
risky loss

proportion rejected

2447

6

delay length (sec)

== certain reward
=== risky win
s risky loss

10.5

firing rate (spk/s)

time (s)

()

more similar to
reward epogh

less similar to
reward epoch

= risKy win
mmm risky loss

correlation with safe trial reward epoch

-2

-1

0
time (s)

Fig. 6. Behavioral shift and no-reward signal after risky loss. A: acceptance rate of risky options after a risky win and a risky loss. Animals become more likely
to reject a risky option after a risky loss. B: average firing rate of the population during trials with risky and safe options, aligned to reward delivery/risk resolution.
Vertical lines indicate the start of the trial and the reward delivery. C: correlation between normalized activity vector from a running boxcar from risky trials
with normalized activity vector from the reward epoch from large, safe reward trials, aligned to reward delivery/risk resolution. The correlation shows gradual
rise leading up to risk resolution and a divergence following resolution. Unsuccessful risky outcome becomes negatively correlated 500-1,500 ms after reward
delivery. Shaded regions surrounding plotted lines indicate 95% confidence intervals. Beige shaded period is the 200 ms analyzed further in the test.

semble ramping we describe here is a gradual change in
ensemble activity pattern.

Throughout the trial, we saw a change in the ensemble
activity pattern that ramped toward the ensemble activity
pattern present during the reward epoch. The negative corre-
lation we observed after a risky loss was negatively correlated
with the ensemble activity pattern in the reward epoch. Thus
we speculate that there may be a connection between these
signals. Specifically, the positive correlation may be a signal
that helps maintain the current status quo—a signal meant to
maintain a behavior. The negative correlation may be the flip
side of this signal—a signal meant to change the behavioral
strategy (Hayden et al. 2011a, 2011b; Holroyd and Coles 2002;
Quilodran et al. 2008).

When we strive to meet some goal that requires some time
to achieve, it is necessary to maintain motivation to obtain the
eventual reward. One method of maintaining motivation would
be to maintain some representation of the reward as progress is
made toward it, such that the progress itself is rewarding
(Hillman and Bilkey 2010; Howe et al. 2013). Such a signal
could potentially act as a control signal, keeping the animal

motivated to perform a particular action. A ramping ensemble
reward function would ensure that when the reward is clos-
est—when the least amount of investment is required to obtain
the reward—the signal is strongest, and thus one is least likely
to give up (Shidara and Richmond 2002). Thus a ramping
ensemble anticipatory signal may be a general mechanism used
by the brain to facilitate perseveration toward a goal.

Consistent with this idea, maintaining motivation toward a
goal is the function that has been ascribed to recently observed
ramps in dopamine (Howe et al. 2013). We speculate that the
ensemble ramps in dACC may play a complementary role—
given the noted function of dACC in behavioral control
(Hayden et al. 2011a, 2011b; Kennerley et al. 2006; Quilodran
et al. 2008; Rushworth et al. 2011), it is possible that ensemble
ramps in dACC may implement an abstract control signal to
have the animal continue to perform the actions required to
achieve its goal, the strength of which may depend on the value
of the goal being achieved (Holroyd and Coles 2002). Given
dACC’s dense projections to motor areas, this signal may then
be translated into more concrete motor actions downstream
(Paus 2001).
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Alternatively, the anticipatory ramping ensemble signals
observed in dACC may be a component of a reward anticipa-
tion circuit used to monitor the expected reward (Shidara and
Richmond 2002). Dopamine neurons are known to encode the
degree of reward expectancy, including when that expectation
is spread out over time (Fiorillo 2003; Fiorillo et al. 2008;
Schultz and Dickinson 2000). Recently, it has been suggested
that dopamine ramps observed as animals approach a reward
can be understood in the same framework (Gershman 2014; cf.
Niv 2013). Thus our findings here of ramping ensemble signals
in dACC as a reward approaches may be related to such a
dopamine signal and play a role in monitoring expected re-
wards.

While in this study we focused on the responses of dACC
neurons during the delay and at the time of reward, in a
previous study using the same data set we analyzed the re-
sponses during the initial choice period (Blanchard and Hayden
2014). In that article, we reported that during the initial choice
period dACC neurons responded qualitatively differently to
our task variables depending on the behavior of the animal.
Specifically, neurons encoded delay more strongly on accept
trials than on reject trials and reward size more strongly on
reject trials than on accept trials (although they did still
significantly encode reward size on accept trials). One potential
reason for the qualitative differences between accept and reject
trials is that the same variables are being encoded on the two
trial types to serve different functions. On a trial where the
animal accepts the option, persistent fixation must be main-
tained, requiring a persistent control signal. We have suggested
here that this control signal may be directly related to the
representation of reward. Different types of control or learning
processes may be required when the animal rejects an offer.
For example, on reject trials dACC may encode an abstract
“switch” signal to stop the animal from continuing to fixate and
have it look away. Alternatively, dACC neurons may multiplex
the action taken and the resulting outcome to drive learning
(Camille et al. 2011; Hayden and Platt 2010).

Previous work has shown a link between dACC, persistence,
self-control, and effort (Gusnard et al. 2003; Parvizi et al.
2013). However, little is known about exactly what the func-
tional role of dACC in these processes is. On the basis of our
findings here, we speculate that dACC may implement a
control signal to allow for persistent commitment to a decision.
This control signal may act to keep the animal progressing
toward a goal. This potential function of dACC may suggest a
framework for thinking about the neuroscience of persistence:
to persist toward a goal, motivation and cognitive control must
be maintained. These components may be implemented
through a gradually arising reward representation.
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